Isoflurane protects renal function against ischemia and reperfusion through inhibition of protein kinases, JNK and ERK.

نویسندگان

  • Hideo Hashiguchi
  • Hiroaki Morooka
  • Hiroshi Miyoshi
  • Masanori Matsumoto
  • Takehiko Koji
  • Koji Sumikawa
چکیده

Isoflurane has a pharmacological preconditioning effect against ischemia in the heart and brain, but whether this also occurs in the kidney is unclear. In this study, we investigated pharmacological preconditioning by isoflurane in the rat kidney. In the isoflurane preconditioning group (1.5% isoflurane for 20 min before renal ischemia) serum creatinine (1.2 +/- 0.7 and 1.1 +/- 0.2 mg/dL) and blood urea nitrogen (99 +/- 29 and 187 +/- 31 mg/dL) were significantly smaller at 24 and 48 h after reperfusion than in the nonpreconditioning group (creatinine; 2.4 +/- 1.2 and 2.9 +/- 0.9 mg/dL, urea; 62 +/- 19 and 79 +/- 20 mg/dL). We also investigated the intracellular signal transduction involved in isoflurane preconditioning in the kidney. The activities of the stress protein kinases, JNK and ERK but not p38, were significantly less in the kidneys of the preconditioning group than in those of the nonpreconditioning group (P < 0.05). We conclude that isoflurane has a preconditioning effect against renal ischemia/reperfusion injury when administered before ischemia. Inhibition of the protein kinases, JNK and ERK, might be involved in the mechanisms of isoflurane preconditioning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats

Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...

متن کامل

Calcitonin gene-related peptide protects rats from cerebral ischemia/reperfusion injury via a mechanism of action in the MAPK pathway

The aim of the present study was to investigate the protective function and underlying mechanism of calcitonin gene-related peptide (CGRP) on cerebral ischemia/reperfusion damage in rats. Adult male Wistar rats were selected for the establishment of an ischemia/reperfusion injury model through the application of a middle cerebral artery occlusion. Animals were randomly divided into 6 groups of ...

متن کامل

Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion.

Endoplasmic reticulum (ER) stress is activated during and contributes to ischemia-reperfusion (I/R) injury. Attenuation of ER stress-induced apoptosis protects the heart against I/R injury. Using apelin, a ligand used to activate the apelin APJ receptor, which is known to be cardioprotective, this study was designed to investigate 1) the time course of changes in I/R injury after ER stress; 2) ...

متن کامل

Ceramide from sphingomyelin hydrolysis differentially mediates mitogen-activated protein kinases (MAPKs) activation following cerebral ischemia in rat hippocampal CA1 subregion☆

OBJECTIVE To explore the role that ceramide plays in the activation of mitogen-activated protein kinases (MAPKs) during cerebral ischemia and reperfusion. METHODS Rats were subjected to ischemia by the four-vessel occlusion (4-VO) method. The sphingomyelinase inhibitor TPCK was administered to the CA1 subregion of the rat hippocampus before inducing ischemia. Western blot was used to examine ...

متن کامل

Gypenoside Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of Mitogen-Activated Protein Kinase Mediated Nuclear Factor Kappa B Pathway In Vitro and In Vivo

Gypenoside (GP) is the major effective component of Gynostemma pentaphyllum and has been shown to encompass a variety of pharmacological activities. In this study, we investigated whether GP is able to protect cardiomyocytes against injury myocardial ischemia-reperfusion (I/R) injury by using in vitro oxygen-glucose deprivation-reoxygenation (OGD/R) H9c2 cell model and in vivo myocardial I/R ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Anesthesia and analgesia

دوره 101 6  شماره 

صفحات  -

تاریخ انتشار 2005